Bibliography

[1]

Laurien I. Roest, Sabrya E. van Heijst, Louis Maduro, Juan Rojo, and Sonia Conesa-Boj. Charting the low-loss region in electron energy loss spectroscopy with machine learning. Ultramicroscopy, 222:113202, 2021. doi:https://doi.org/10.1016/j.ultramic.2021.113202.

[2]

Sabrya E. van Heijst, Masaki Mukai, Eiji Okunishi, Hiroki Hashiguchi, Laurien I. Roest, Louis Maduro, Juan Rojo, and Sonia Conesa-Boj. Illuminating the electronic properties of ws2 polytypism with electron microscopy. Annalen der Physik, 533(3):2000499, 2021. doi:https://doi.org/10.1002/andp.202000499.

[3]

Abel Brokkelkamp, Jaco ter Hoeve, Isabel Postmes, Sabrya E. van Heijst, Louis Maduro, Albert V. Davydov, Sergiy Krylyuk, Juan Rojo, and Sonia Conesa-Boj. Spatially resolved band gap and dielectric function in two-dimensional materials from electron energy loss spectroscopy. The Journal of Physical Chemistry A, 126(7):1255–1262, 2022. PMID: 35167301. doi:https://doi.org/10.1021/acs.jpca.1c09566.

[4]

Stijn van der Lippe, Abel Brokkelkamp, Juan Rojo, and Sonia Conesa-Boj. Localized exciton anatomy and bandgap energy modulation in 1d mos2 nanostructures. Advanced Functional Materials, n/a(n/a):2307610, 2023. doi:https://doi.org/10.1002/adfm.202307610.

[5]

Helena La, Abel Brokkelkamp, Stijn van der Lippe, Jaco ter Hoeve, Juan Rojo, and Sonia Conesa-Boj. Edge-induced excitations in bi2te3 from spatially-resolved electron energy-gain spectroscopy. Ultramicroscopy, 254:113841, 2023. doi:https://doi.org/10.1016/j.ultramic.2023.113841.

[6]

The NNPDF Collaboration, Luigi Del Debbio, Stefano Forte, José I. Latorre, Andrea Piccione, and Joan Rojo. Neural network determination of parton distributions: the nonsinglet case. Journal of High Energy Physics, 2007(03):039, mar 2007. doi:https://doi.org/10.1088/1126-6708/2007/03/039.

[7]

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: an imperative style, high-performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d\textquotesingle Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019. URL: https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.

[8]

Richard D. Ball, Stefano Carrazza, Juan Cruz-Martinez, Luigi Del Debbio, Stefano Forte, Tommaso Giani, Zahari Iranipour, Shayanand Kassabov, Jose I. Latorre, Emanuele R. Nocera, Rosalyn L. Pearson, Juan Rojo, Roy Stegeman, Christopher Schwan, Maria Ubiali, Cameron Voisey, and Michael Wilson. The path to proton structure at 1. The European Physical Journal C, 2022. doi:https://doi.org/10.1140/epjc/s10052-022-10328-7.

[9]

R.F. Egerton. Limits to the spatial, energy and momentum resolution of electron energy-loss spectroscopy. Ultramicroscopy, 107(8):575–586, 2007. doi:https://doi.org/10.1016/j.ultramic.2006.11.005.

[10]

C. Von Festenberg and E. Kröger. Retardation effects for the electron energy loss probability in gap and si. Physics Letters A, 26(8):339–340, 1968. doi:https://doi.org/10.1016/0375-9601(68)90360-5.

[11]

P. Moreau, N. Brun, C. A. Walsh, C. Colliex, and A. Howie. Relativistic effects in electron-energy-loss-spectroscopy observations of the $\mathrm S\mathrm i/\mathrm S\mathrm i\mathrm O_2$ interface plasmon peak. Phys. Rev. B, 56:6774–6781, Sep 1997. doi:https://doi.org/10.1103/PhysRevB.56.6774.

[12]

M. Stöger-Pollach, H. Franco, P. Schattschneider, S. Lazar, B. Schaffer, W. Grogger, and H.W. Zandbergen. Čerenkov losses: a limit for bandgap determination and kramers–kronig analysis. Micron, 37(5):396–402, 2006. Proceedings of the International Workshop on Enhanced Data Generated with Electrons (EDGE). doi:https://doi.org/10.1016/j.micron.2006.01.001.

[13]

M. Stöger-Pollach. Optical properties and bandgaps from low loss eels: pitfalls and solutions. Micron, 39(8):1092–1110, 2008. doi:https://doi.org/10.1016/j.micron.2008.01.023.

[14]

Rolf Erni and Nigel D. Browning. The impact of surface and retardation losses on valence electron energy-loss spectroscopy. Ultramicroscopy, 108(2):84–99, 2008. doi:https://doi.org/10.1016/j.ultramic.2007.03.005.

[15]

M. Stöger-Pollach. Low voltage eels—how low? Ultramicroscopy, 145:98–104, 2014. Low-Voltage Electron Microscopy. doi:https://doi.org/10.1016/j.ultramic.2013.07.004.

[16]

Michal Horák and Michael Stöger-Pollach. The čerenkov limit of si, gaas and gap in electron energy loss spectrometry. Ultramicroscopy, 157:73–78, 2015. doi:https://doi.org/10.1016/j.ultramic.2015.06.005.

[17]

Rolf Erni. On the validity of the čerenkov limit as a criterion for precise band gap measurements by veels. Ultramicroscopy, 160:80–83, 2016. doi:https://doi.org/10.1016/j.ultramic.2015.10.006.

[18]

Norihito Sakaguchi, Luka Tanda, and Yuji Kunisada. Measurement of the dielectric function of α-al2o3 by transmission electron microscopy – electron energy-loss spectroscopy without cerenkov radiation effects. Ultramicroscopy, 169:37–43, 2016. doi:https://doi.org/10.1016/j.ultramic.2016.07.003.

[19]

S. Schamm and G. Zanchi. Study of the dielectric properties near the band gap by veels: gap measurement in bulk materials. Ultramicroscopy, 96(3):559–564, 2003. Proceedings of the International Workshop on Strategies and Advances in Atomic Level Spectroscopy and Analysis. doi:https://doi.org/10.1016/S0304-3991(03)00116-5.

[20]

B. Rafferty and L. M. Brown. Direct and indirect transitions in the region of the band gap using electron-energy-loss spectroscopy. Phys. Rev. B, 58:10326–10337, Oct 1998. doi:https://doi.org/10.1103/PhysRevB.58.10326.

[21]

B. Rafferty, S. J. Pennycook, and L. M. Brown. Zero loss peak deconvolution for bandgap eel spectra. Journal of Electron Microscopy, 49(4):517–524, 01 2000. doi:https://doi.org/10.1093/oxfordjournals.jmicro.a023838.

[22]

R.F. Egerton and S.C. Cheng. Measurement of local thickness by electron energy-loss spectroscopy. Ultramicroscopy, 21(3):231–244, 1987. doi:https://doi.org/10.1016/0304-3991(87)90148-3.

[23]

K. Iakoubovskii, K. Mitsuishi, Y. Nakayama, and K. Furuya. Thickness measurements with electron energy loss spectroscopy. Microscopy Research and Technique, 71(8):626–631, 2008. doi:https://doi.org/10.1002/jemt.20597.

[24]

D W Johnson and J C H Spence. Determination of the single-scattering probability distribution from plural-scattering data. Journal of Physics D: Applied Physics, 7(6):771, apr 1974. doi:https://doi.org/10.1088/0022-3727/7/6/304.

[25]

Ray Egerton. Electron Energy-Loss Spectroscopy in the Electron Microscope, 3rd Edition (Springer, 2011). Springer Science & Business Media, 01 2011. ISBN 978-1-4419-9582-7. doi:https://doi.org/10.1007/978-1-4419-9583-4.