# -*- coding: utf-8 -*-
import json
import pathlib
import shutil
import numpy as np
import pandas as pd
import yaml
from ..loader import load_datasets
from ..log import logging
_logger = logging.getLogger(__name__)
[docs]
class Prefit:
def __init__(self, config):
self.datasets = load_datasets(
config["data_path"],
config["datasets"],
config["coefficients"],
config["use_quad"],
config["use_theory_covmat"],
config["use_t0"],
False,
config.get("default_order", "LO"),
config.get("theory_path", None),
config.get("rot_to_fit_basis", None),
config.get("uv_couplings", False),
)
[docs]
def chi2_sm(self):
"""Prints the SM chi2 per datapoint per dataset."""
diff_sm = self.datasets.Commondata - self.datasets.SMTheory
covmat_diff_sm = self.datasets.InvCovMat @ diff_sm
chi2_sm = []
cnt = 0
for ndat_exp in self.datasets.NdataExp:
chi2_sm.append(
np.dot(
diff_sm[cnt : cnt + ndat_exp],
covmat_diff_sm[cnt : cnt + ndat_exp],
)
)
cnt += ndat_exp
df = pd.DataFrame(
{
"ndat": self.datasets.NdataExp,
"chi2_sm/ndat": np.array(chi2_sm) / self.datasets.NdataExp,
},
index=self.datasets.ExpNames,
)
_logger.info(f"Chi2 average : {df.to_string()}")