Source code for smefit.optimize.mc

# -*- coding: utf-8 -*-
"""Fitting the Wilson coefficients with |MC|."""
import time

import cma
import numpy as np
import scipy.optimize as opt
from rich.style import Style
from rich.table import Table

from .. import log
from ..coefficients import CoefficientManager
from ..loader import load_datasets
from . import Optimizer

_logger = log.logging.getLogger(__name__)


[docs] class MCOptimizer(Optimizer): """Optimizer specification for |MC|. Parameters ---------- loaded_datasets : `smefit.loader.DataTuple` dataset tuple coefficients : `smefit.coefficients.CoefficientManager` instance of `CoefficientManager` with all the relevant coefficients to fit result_path: pathlib.Path path to result folder use_quad : bool If True use also |HO| corrections result_ID : str result name single_parameter_fits : bool True for individual scan fits use_multiplicative_prescription : bool if True uses the multiplicative prescription for the |EFT| corrections replica : int replica number use_bounds : bool If true start the minimization with the specified values of min and max for each coeffient minimizer_specs : dict minimizer options. The allowed optrions are: Args: - mc_minimiser: minimizer alogrithm: 'cma', 'dual_annealing', 'trust-constr'. - maxiter: number of maximium iterations. - restarts: only for cma, number of restarts (< 9). - initial_temp: only for dual_annealing. The initial temperature, use higher values to facilitates a wider search of the energy landscape, allowing dual_annealing to escape local minima that it is trapped in. Default value is 5230. Range is (0.01, 5.e4]. - restart_temp_ratio: only for dual_annealing. During the annealing process, temperature is decreasing, when it reaches initial_temp * restart_temp_ratio, the reannealing process is triggered. Default value of the ratio is 2e-5. Range is (0, 1). See also `cma.fmin`, `scipy.optimize.minimize`, `scipy.optimize.dual_annealing`. """ def __init__( self, loaded_datasets, coefficients, result_path, use_quad, result_ID, replica, single_parameter_fits, use_bounds, minimizer_specs, use_multiplicative_prescription, external_chi2=None, ): super().__init__( f"{result_path}/{result_ID}", loaded_datasets, coefficients, use_quad, single_parameter_fits, use_multiplicative_prescription, external_chi2, ) self.chi2_values = [] self.coeff_steps = [] self.replica = replica self.epoch = 0 self.use_bounds = use_bounds self.minimizer_specs = minimizer_specs
[docs] @classmethod def from_dict(cls, config): """ Create object from theory dictionary. The default minimizer is trust-constr. The minimizer options have to be specified with: ``` mc_minimiser: 'cma' maxiter: 100000 restarts: 0 ``` Parameters ---------- config : dict configuration dictionary Returns ------- Optimizer created object """ loaded_datasets = load_datasets( config["data_path"], config["datasets"], config["coefficients"], config["use_quad"], config["use_theory_covmat"], config["use_t0"], config.get("use_multiplicative_prescription", False), config.get("default_order", "LO"), config.get("theory_path", None), config.get("rot_to_fit_basis", None), config.get("uv_couplings", False), config.get("external_chi2", False), ) coefficients = CoefficientManager.from_dict(config["coefficients"]) use_bounds = config.get("use_bounds", True) if not use_bounds: log.console.log("Running minimization without initial bounds") minimizer_specs = {} minimizer_specs["mc_minimiser"] = config.get("mc_minimiser", "trust-constr") if minimizer_specs["mc_minimiser"] == "cma": minimizer_specs["restarts"] = config.get("restarts", 0) if "restarts" not in config: _logger.warning("Using default no restarts") elif minimizer_specs["mc_minimiser"] == "dual_annealineg": minimizer_specs["restart_temp_ratio"] = config.get( "restart_temp_ratio", 2e-5 ) if "restart_temp_ratio" not in config: _logger.warning("Using default restert_temp_ratio: 2e-5") minimizer_specs["initial_temp"] = config.get("initial_temp", 5230) if "initial_temp" not in config: _logger.warning("Using default initial_temp: 5230") elif "mc_minimiser" not in config: _logger.warning("Using default minimizer 'trust-constr'") minimizer_specs["maxiter"] = config.get("maxiter", int(1e4)) if "maxiter" not in config: _logger.warning("Setting maximum number of iterations (maxiter) to 1e4") single_parameter_fits = config.get("single_parameter_fits", False) use_multiplicative_prescription = config.get( "use_multiplicative_prescription", False ) external_chi2 = config.get("external_chi2", None) return cls( loaded_datasets, coefficients, config["result_path"], config["use_quad"], config["result_ID"], config["replica"], single_parameter_fits, use_bounds, minimizer_specs, use_multiplicative_prescription, external_chi2, )
[docs] def get_status(self, chi2): if len(self.chi2_values) == 0: self.chi2_values.append(chi2) if chi2 < self.chi2_values[-1]: self.chi2_values.append(chi2) self.coeff_steps.append(self.free_parameters.value) self.epoch += 1
[docs] def chi2_func_mc(self, params, print_log=True): """ Wrap the chi2 in a function for the optimizer. Pass noise and data info as args. Log the chi2 value and values of the coefficients. Parameters ---------- params : np.ndarray noise and data info Returns ------- np.ndarray chi2 value """ self.coefficients.set_free_parameters(params) self.coefficients.set_constraints() current_chi2 = self.chi2_func(True, print_log) self.get_status(current_chi2) return current_chi2
[docs] def run_sampling(self): """Run the minimization with |MC|.""" t1 = time.time() maxiter = self.minimizer_specs["maxiter"] algorithm = self.minimizer_specs["mc_minimiser"] if algorithm == "cma": bounds = [None, None] if self.use_bounds: bounds = [self.free_parameters.minimum, self.free_parameters.maximum] cma.fmin( self.chi2_func_mc, self.free_parameters.value, sigma0=0.68, options={ "bounds": bounds, "verbose": -1, "verb_log": False, "ftarget": self.npts, "tolx": 1e-5, "maxiter": maxiter, }, bipop=self.minimizer_specs["restarts"] > 0, restarts=self.minimizer_specs["restarts"], ) else: if self.use_bounds: bounds = opt.Bounds( self.free_parameters.minimum, self.free_parameters.maximum ) else: bounds = opt.Bounds( np.full(self.free_parameters.shape[0], -np.inf), np.full(self.free_parameters.shape[0], np.inf), ) if algorithm == "dual_annealing": res = opt.dual_annealing( self.chi2_func_mc, bounds, minimizer_kwargs={ "method": "trust-constr", "bounds": bounds, "options": {"maxiter": maxiter}, }, maxiter=maxiter, x0=self.free_parameters.value, initial_temp=self.minimizer_specs["initial_temp"], restart_temp_ratio=self.minimizer_specs["restart_temp_ratio"], ) else: res = opt.minimize( self.chi2_func_mc, self.free_parameters.value, method="trust-constr", bounds=bounds, options={"maxiter": maxiter, "xtol": 1e-5}, ) _logger.info(res) if not res["success"]: raise ValueError("Minimization was not successful, exit ...") t2 = time.time() log.console.log(f"Time : {((t2 - t1) / 60.0):.3f} minutes")
[docs] def save(self): """ Save MC replicas to json inside a dictionary: {coff: replica values} Parameters ---------- result : dict result dictionary """ self.coefficients.set_free_parameters(self.free_parameters.value) self.coefficients.set_constraints() values = {} if not self.single_parameter_fits: values["chi2"] = self.chi2_values[-1] / self.npts table = Table(style=Style(color="white"), title_style="bold cyan", title=None) table.add_column("Parameter", style="bold red", no_wrap=True) table.add_column("Best value") for par, value in zip(self.coefficients.name, self.coefficients.value): table.add_row(f"{par}", f"{value:.3f}") values[par] = value log.console.print(table) posterior_file = ( self.results_path / f"replica_{self.replica}/coefficients_rep_{self.replica}.json" ) fit_result = { "samples": values, "logz": None, "max_loglikelihood": None, "best_fit_point": None, } self.dump_fit_result(posterior_file, fit_result)