References

A+16

Georges Aad and others. Measurements of top-quark pair differential cross-sections in the lepton+jets channel in $pp$ collisions at $\sqrt s=8$ TeV using the ATLAS detector. Eur. Phys. J. C, 76(10):538, 2016. arXiv:1511.04716, doi:10.1140/epjc/s10052-016-4366-4.

AJMT14

Rodrigo Alonso, Elizabeth E. Jenkins, Aneesh V. Manohar, and Michael Trott. Renormalization Group Evolution of the Standard Model Dimension Six Operators III: Gauge Coupling Dependence and Phenomenology. JHEP, 04:159, 2014. arXiv:1312.2014, doi:10.1007/JHEP04(2014)159.

B+10

Richard D. Ball and others. Fitting Parton Distribution Data with Multiplicative Normalization Uncertainties. JHEP, 05:075, 2010. arXiv:0912.2276, doi:10.1007/JHEP05(2010)075.

B+18

D. Barducci and others. Interpreting top-quark LHC measurements in the standard-model effective field theory. 2018. arXiv:1802.07237.

BissmannGHKroninger20

Stefan Bißmann, Cornelius Grunwald, Gudrun Hiller, and Kevin Kröninger. Top and Beauty synergies in SMEFT-fits at present and future colliders. 12 2020. arXiv:2012.10456.

BJT17

Ilaria Brivio, Yun Jiang, and Michael Trott. The SMEFTsim package, theory and tools. JHEP, 12:070, 2017. arXiv:1709.06492, doi:10.1007/JHEP12(2017)070.

BT19

Ilaria Brivio and Michael Trott. The Standard Model as an Effective Field Theory. Phys. Rept., 793:1–98, 2019. arXiv:1706.08945, doi:10.1016/j.physrep.2018.11.002.

BSchafervDW21

Sebastian Bruggisser, Ruth Schäfer, Danny van Dyk, and Susanne Westhoff. The Flavor of UV Physics. 1 2021. arXiv:2101.07273.

BW86

W. Buchmuller and D. Wyler. Effective Lagrangian Analysis of New Interactions and Flavor Conservation. Nucl. Phys., B268:621–653, 1986. doi:10.1016/0550-3213(86)90262-2.

BEF+16

Andy Buckley, Christoph Englert, James Ferrando, David J. Miller, Liam Moore, Michael Russell, and Chris D. White. Constraining top quark effective theory in the LHC Run II era. JHEP, 04:015, 2016. arXiv:1512.03360, doi:10.1007/JHEP04(2016)015.

BEGF+16

Anja Butter, Oscar J. P. Éboli, J. Gonzalez-Fraile, M. C. Gonzalez-Garcia, Tilman Plehn, and Michael Rauch. The Gauge-Higgs Legacy of the LHC Run I. JHEP, 07:152, 2016. arXiv:1604.03105, doi:10.1007/JHEP07(2016)152.

CDI+19

Stefano Carrazza, Celine Degrande, Shayan Iranipour, Juan Rojo, and Maria Ubiali. Can New Physics hide inside the proton? Phys. Rev. Lett., 123(13):132001, 2019. arXiv:1905.05215, doi:10.1103/PhysRevLett.123.132001.

CKB+19

The NNPDF Collaboration, Rabah Abdul Khalek, Richard D. Ball, Stefano Carrazza, Stefano Forte, Tommaso Giani, Zahari Kassabov, Rosalyn L. Pearson, Emanuele R. Nocera, Juan Rojo, Luca Rottoli, Maria Ubiali, Cameron Voisey, and Michael Wilson. Parton distributions with theory uncertainties: general formalism and first phenomenological studies. 2019. arXiv:1906.10698.

dSAARA+19

Eduardo da Silva Almeida, Alexandre Alves, N. Rosa Agostinho, Oscar J.P. Éboli, and M.C. Gonzalez-Garcia. Electroweak Sector Under Scrutiny: A Combined Analysis of LHC and Electroweak Precision Data. Phys. Rev. D, 99(3):033001, 2019. arXiv:1812.01009, doi:10.1103/PhysRevD.99.033001.

DDM+20

Céline Degrande, Gauthier Durieux, Fabio Maltoni, Ken Mimasu, Eleni Vryonidou, and Cen Zhang. Automated one-loop computations in the SMEFT. 8 2020. arXiv:2008.11743.

DGK+13

Celine Degrande, Nicolas Greiner, Wolfgang Kilian, Olivier Mattelaer, Harrison Mebane, Tim Stelzer, Scott Willenbrock, and Cen Zhang. Effective Field Theory: A Modern Approach to Anomalous Couplings. Annals Phys., 335:21–32, 2013. arXiv:1205.4231, doi:10.1016/j.aop.2013.04.016.

EMM+20

John Ellis, Maeve Madigan, Ken Mimasu, Veronica Sanz, and Tevong You. Top, Higgs, Diboson and Electroweak Fit to the Standard Model Effective Field Theory. 12 2020. arXiv:2012.02779.

EGAMR21

Jacob J. Ethier, Raquel Gomez-Ambrosio, Giacomo Magni, and Juan Rojo. Smeft analysis of vector boson scattering and diboson data from the lhc run ii. The European Physical Journal C, Jun 2021. URL: http://dx.doi.org/10.1140/epjc/s10052-021-09347-7, doi:10.1140/epjc/s10052-021-09347-7.

EMM+21

Jacob J. Ethier, Giacomo Magni, Fabio Maltoni, Luca Mantani, Emanuele R. Nocera, Juan Rojo, Emma Slade, Eleni Vryonidou, and Cen Zhang. Combined smeft interpretation of higgs, diboson, and top quark data from the lhc. 2021. arXiv:2105.00006.

FFM+15

Adam Falkowski, Benjamin Fuks, Kentarou Mawatari, Ken Mimasu, Francesco Riva, and Verónica Sanz. Rosetta: an operator basis translator for Standard Model effective field theory. Eur. Phys. J., C75(12):583, 2015. arXiv:1508.05895, doi:10.1140/epjc/s10052-015-3806-x.

FHCP13

F. Feroz, M. P. Hobson, E. Cameron, and A. N. Pettitt. Importance Nested Sampling and the MultiNest Algorithm. 2013. arXiv:1306.2144, doi:10.21105/astro.1306.2144.

FH08

Farhan Feroz and M.P. Hobson. Multimodal nested sampling: an efficient and robust alternative to MCMC methods for astronomical data analysis. Mon. Not. Roy. Astron. Soc., 384:449, 2008. arXiv:0704.3704, doi:10.1111/j.1365-2966.2007.12353.x.

GIK+21

Admir Greljo, Shayan Iranipour, Zahari Kassabov, Maeve Madigan, James Moore, Juan Rojo, Maria Ubiali, and Cameron Voisey. Parton distributions in the SMEFT from high-energy Drell-Yan tails. 4 2021. arXiv:2104.02723.

GIMR10

B. Grzadkowski, M. Iskrzynski, M. Misiak, and J. Rosiek. Dimension-Six Terms in the Standard Model Lagrangian. JHEP, 10:085, 2010. arXiv:1008.4884, doi:10.1007/JHEP10(2010)085.

HMN+19

Nathan P. Hartland, Fabio Maltoni, Emanuele R. Nocera, Juan Rojo, Emma Slade, Eleni Vryonidou, and Cen Zhang. A Monte Carlo global analysis of the Standard Model Effective Field Theory: the top quark sector. JHEP, 04:100, 2019. arXiv:1901.05965, doi:10.1007/JHEP04(2019)100.

vBNRS19

Samuel van Beek, Emanuele R. Nocera, Juan Rojo, and Emma Slade. Constraining the SMEFT with Bayesian reweighting. SciPost Phys., 7(5):070, 2019. arXiv:1906.05296, doi:10.21468/SciPostPhys.7.5.070.

Wei79a

Steven Weinberg. Baryon and Lepton Nonconserving Processes. Phys. Rev. Lett., 43:1566–1570, 1979. doi:10.1103/PhysRevLett.43.1566.

Wei79b

Steven Weinberg. Phenomenological Lagrangians. Physica, A96:327, 1979. URL: http://www.slac.stanford.edu/spires/find/hep/www?j=PHYSA,A96,327.