smefit.core package
Todo
docs
Submodules
smefit.core.chisquared module
Module for the computation of chi-squared values
- smefit.core.chisquared.compute_chi2(config, dataset, coeffs, labels)[source]
 Compute the components for the chi2
Here we also perform the cross-validation splitting at the level of the residuals, so as to prevent singular covariances matrices.
A mask is applied to each experiment and if the dataset has only 1 datapoint it is placed in the training set
Returns the theory - exp vector and the inverse cov mat * (theory - exp)
smefit.core.compute_theory module
Module for the generation of theory predictions
smefit.core.load_data module
Module for reading in commondata, theory and SMEFT corrections
- smefit.core.load_data.CL_bounds(chi2, coeff, percent_CL)[source]
 Compute either the 68% or 95% confidence intervals
- smefit.core.load_data.CoeffTuple
 alias of
Coefficients
- class smefit.core.load_data.DataTuple(Commondata, SMTheory, CorrectionsDICT, CorrectionsVAL, HOcorrectionsDICT, HOcorrectionsVAL, ExpNames, NdataExp, Kinematics, Noise, TrainingMask, ValidationMask, CovMat)
 Bases:
tuple- property Commondata
 Alias for field number 0
- property CorrectionsDICT
 Alias for field number 2
- property CorrectionsVAL
 Alias for field number 3
- property CovMat
 Alias for field number 12
- property ExpNames
 Alias for field number 6
- property HOcorrectionsDICT
 Alias for field number 4
- property HOcorrectionsVAL
 Alias for field number 5
- property Kinematics
 Alias for field number 8
- property NdataExp
 Alias for field number 7
- property Noise
 Alias for field number 9
- property SMTheory
 Alias for field number 1
- property TrainingMask
 Alias for field number 10
- property ValidationMask
 Alias for field number 11
- smefit.core.load_data.aggregate_coefficients(config, loaded_datasets, i_rep)[source]
 Aggregate all coefficient labels and construct an array of coefficient values of suitable size. Returns a CoeffTuple of the labels and values.
- smefit.core.load_data.artificial_data_check(set)[source]
 Check that the artificial noise reproduces the original covariance matrix
- smefit.core.load_data.generate_CTartdata(commondata, covmat)[source]
 Generates experimental data noise for level 2 CT
- smefit.core.load_data.generate_artdata(commondata, covmat, i_rep)[source]
 Generates artificial data noise for MC replica i_rep
- smefit.core.load_data.generate_closure(config, dataset, coefficients, pseudocoeff, labels, level)[source]
 Generates a level 0, 1 or 2 closure test set using the coefficients table This is done by shifting the ‘Noise’ attribute of a dataset tuple accordingly We fit to pseudodata (the SM) as opposed to real data (experiment)